
The RF Line NPN Silicon RF Power Transistor

The MRF6414 is designed for 26 volt UHF large signal, common emitter, class AB linear amplifier applications.

- Specified 26 Volt, 960 MHz Characteristics Output Power = 50 Watts Minimum Gain = 8.5 dB @ 960 MHz, Class AB Minimum Efficiency = 50% @ 960 MHz, 50 Watts
- Silicon Nitride Passivated
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- Circuit Board Photomaster Available by Ordering Document MRF6414PHT/D from Motorola Literature Distribution.

50 W, 960 MHz RF POWER TRANSISTOR NPN SILICON

MAXIMUM RATINGS

Rating			Value		Unit
Collector-Emitter Voltage		VCEO	28		Vdc
Collector-Base Voltage		V _{CBO}	65		Vdc
Emitter-Base Voltage		V _{EBO}	4		Vdc
Collector-Current — Continuous		IC	6		Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C		PD	134 0.77		Watts W/°C
Storage Temperature Range		T _{stg}	-65 to +150		°C
THERMAL CHARACTERISTICS					
Characteristic		Symbol	Max		Unit
Thermal Resistance, Junction to Case		R _θ JC	1.3		°C/W
ELECTRICAL CHARACTERISTICS (T _C = 25° C unless otherwi	se noted)				
Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•			•	
Collector–Emitter Breakdown Voltage ($I_C = 20 \text{ mAdc}, I_B = 0$)	V(BR)CEO	28	—	-	Vdc
Collector–Base Breakdown Voltage ($I_C = 20 \text{ mAdc}, I_E = 0$)	V(BR)CBO	65	—	-	Vdc
Emitter–Base Breakdown Voltage ($I_E = 10 \text{ mAdc}, I_C = 0$)	V(BR)EBO	4	_	-	Vdc
Collector–Emitter Leakage Current (V _{CE} = 30 Vdc, R _{BE} = 75 Ω)	ICER	—	—	10	mAdc
ON CHARACTERISTICS	•				·
DC Current Gain (I _{CE} = 1 Adc, V _{CE} = 5 Vdc)	hFF	30	_	120	_

ELECTRICAL CHARACTERISTICS — continued ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
DYNAMIC CHARACTERISTICS					
Output Capacitance (V_{CB} = 26 Vdc, I _E = 0, f = 1 MHz) (1)	C _{ob}	—	45	—	pF
FUNCTIONAL TESTS					
Common–Emitter Amplifier Power Gain (V _{CC} = 26 Vdc, P _{out} = 50 W, I _{CQ} = 200 mA, f = 960 MHz)	G _{pe}	8.5	_	_	dB
Collector Efficiency (V _{CC} = 26 Vdc, P_{out} = 50 W, I _{CQ} = 200 mA, f = 960 MHz)	η	50	55	_	%
Output Mismatch Stress (V _{CC} = 26 Vdc, P _{OUt} = 50 W, I _{CQ} = 200 mA, f = 960 MHz) VSWR = 3:1; all phase angles at frequency of test	Ψ	No Degradation in Output Power			

(1) For information only. It is not measurable in MRF6414 because of internal matching network.

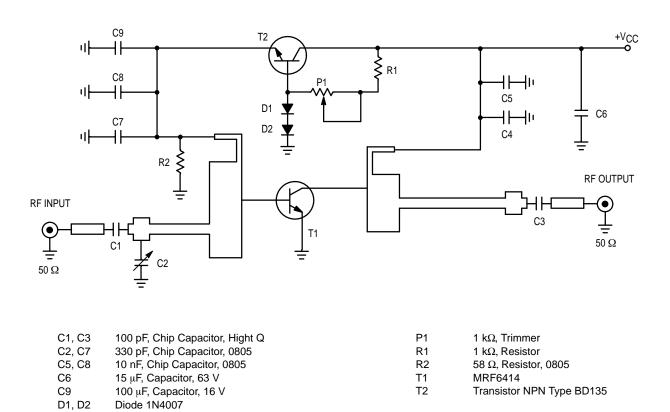


Figure 1. 960 MHz Test Circuit Schematic

TYPICAL CHARACTERISTICS

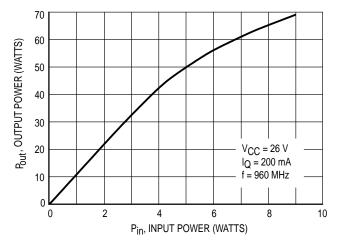


Figure 2. Output Power versus Input Power (Typical)

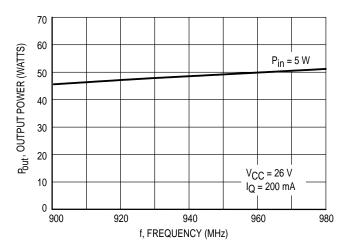


Figure 3. Output Power versus Frequency

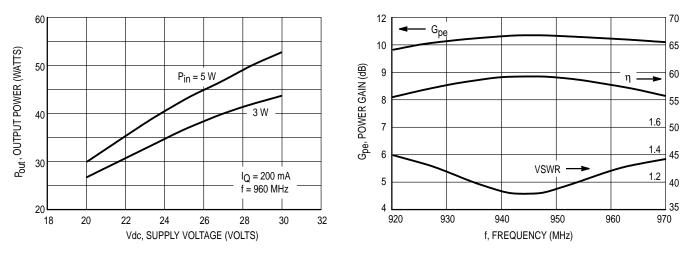
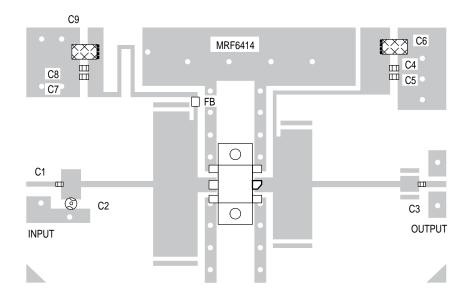
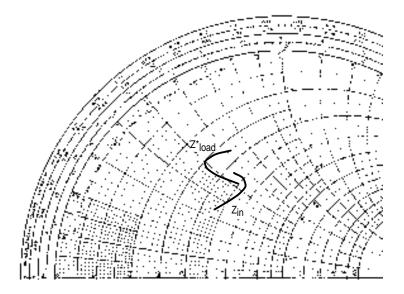
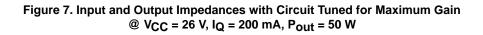
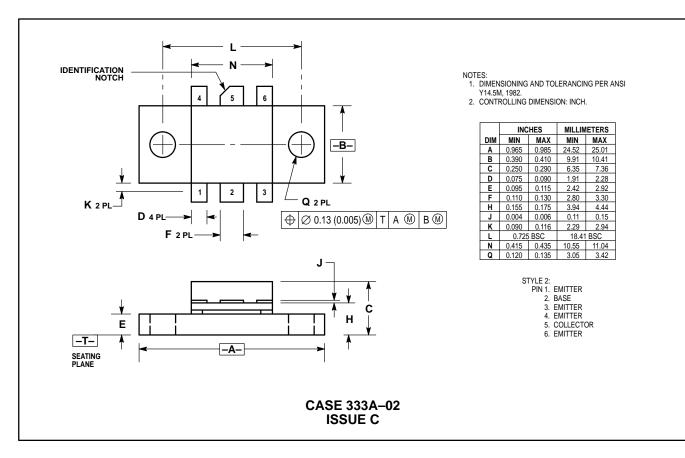


Figure 4. Output Power versus Supply Voltage

Figure 5. Typical Broadband Amplifier


Figure 6. 960 MHz Test Circuit Components Layout


Normalized to 10 Ω

f MHz	Z _{in} Ohms	Z _{OL} * Ohms
900	4.4 + j4.6	4.7 + j4.7
935	5.1 + j4.8	4.0 + j3.9
960	5.4 + j3.6	3.7 + j4.5
980	4.7 + j2.5	3.4 + j4.7

Z_{OL}*: Conjugate of optimum load impedance into which the device operates at a given output power, voltage, current and frequency.

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death Motorola was negligent regarding the design or manufacture of the part. Motorola and its affirest expertent expertent or inductories of the other application for unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and its and its affirest expertence and for unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and its an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609 INTERNET: http://Design-NET.com

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

